Name:	2/6 1		-175	38
Period:				

Linear Motion Review

mv = m <u>times</u> v	Match the variables with the quantities.		Equation: $S = \Delta D/\Delta T$; solve for ΔD .		If $p = mv$, solve for m.		
F/a = F a	1. a =	1. a = sec					
$T_2 + T_1 = T_2 $ T_1	2. S or v =	m/sec			If $a = \Delta V/\Delta T$.		
mv = m v	3. D = 43 m/s ²		If $\Delta \mathbf{v} = \mathbf{v}_2 - \mathbf{v}_1$,		solve for ΔT :		
$\Delta D/\Delta T = \Delta D$ ΔT	4. F = 5. T =	45 meters 22 newtons	solve for v ₂ :				
What do you need to know in order to find an object's speed? What does Δ mean (and give the formula)?			An object has a velocity of 5 m/s and starts 0 m away from you. A) How far does it travel each second? B) Where is it after 1 second? C) Where is it after 2 seconds? D) Where is it after 5 seconds? E) How far does it travel between seconds 7 and 8? A car travels 35 m in 5 secs. Calculate its speed.				
Which has the faster speed? On Both go the same distance, but In the same amount of time, $C_{A} = C_{B}$, but $C_{A} < C_{B}$.	it Car B gets there sooner.	G-	R- C-				
Car 1 is going 20 m/s. Car 2 Which one travels 100 m firs Which one can travel a greate Which one travels farther in 1	t? er distance?	Е-	A bike goes 1 Calculate how				
B The state of the above object's motion applies to the following (can be more than one):			Solution	on:			
			For the following problems, show all work and steps. A plane stops from 300 mph in 15 seconds. Calculate the planes acceleration.				
			A bike going 3 m/s ends up going 9 m/s after 2 seconds. Calculate the bike's acceleration.				
For object B above: A) If there is 1 second between each dot, when did the object reach 12 m?		Speed	Speed (S) or Velocity (V)		Scalar (S) or Vector (V)		
		A ca	A car travels 10 m/s left		10 m/s.		
B) Find the speed of object B.			A bird flies 20 m/s.		60 mph toward Austin.		
			A bike goes 10 m/s		Direction matters.		

