Name: \qquad Velocity and Acceleration
\qquad

Scalars vs. Vectors Vectors require direction;

Scalars only need magnitude (how big).
Scalars vs. Vectors

Vectors require magnitude (how much) and direction, often
vectors can cancel each other out (not acceleration, though).

$12 \mathrm{~m} / \mathrm{s}$ west \quad Speed: $12 \mathrm{~m} / \mathrm{s}$.
Magnitude Direction Velocity: $12 \mathrm{~m} / \mathrm{s}$ west.

Acceleration

Acceleration is how fast you change velocity OR how much the velocity changed in a certain amount of time. An object accelerates when it changes speed OR changes direction!

$$
\begin{gathered}
\underset{\substack{\text { Acceleration } \\
\left.\text { (in } \mathrm{m} / \mathrm{s}^{2}\right)}}{\mathbf{a}=\frac{\Delta \mathbf{V}}{\Delta \mathbf{T}} \rightarrow \begin{array}{c}
\text { Change of Velocity } \\
\text { (in meters/sec) } \\
\text { Change of Time } \\
\text { (in seconds) }
\end{array}} \\
\text { Acceleration equal change of velocity } \\
\text { divided by change of time. }
\end{gathered}
$$

Finding ΔV.

$$
\begin{gathered}
\Delta \text { always }=\text { final }- \text { initial } . \\
\Delta \mathrm{V}=\mathrm{V}_{\text {final }}-\mathrm{V}_{\text {initial }} \mathrm{OR}
\end{gathered}
$$

Final velocity - Initial velocity.
If ΔV is positive the object is speeding up.

If ΔV is negative the object is slowing down (see below).

Ex. A plane starts at rest and ends up going $200 \mathrm{~m} / \mathrm{s}$ in 10 secs. Calculate its acceleration.	
Step 1: Variables $\mathrm{V}_{\mathrm{i}}=0 \mathrm{~m} / \mathrm{s}$ (at rest) $\mathrm{V}_{\mathrm{f}}=200 \mathrm{~m} / \mathrm{s}$ $\mathrm{T}=10 \mathrm{sec}$ $\mathrm{a}=$ \qquad Step 2: Formula $a=\frac{\Delta V}{\Delta T}$	Step 3: Put in numbers and solve $\begin{gathered} a=\frac{\Delta V}{\Delta T}=\frac{V_{f}-V_{i}}{\Delta T}=\frac{200-0}{10} \\ a=\frac{200}{10}=20 \end{gathered}$ Step 4: Add units Pos.means $\mathrm{a}=20 \mathrm{~m} / \mathrm{s}^{2}$

> Ex. A race car starts at $40 \mathrm{~m} / \mathrm{s}$ slows to $10 \mathrm{~m} / \mathrm{s}$ in 5 seconds. Calculate the car's acceleration.

$$
\begin{aligned}
& \text { Step 1: Variables } \\
& \mathrm{V}_{\mathrm{i}}=40 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~V}_{\mathrm{f}}=10 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~T}=5 \mathrm{sec} \\
& \mathrm{a}= \\
& \hline
\end{aligned}
$$

Step 2: Formula

$$
a=\frac{\Delta V}{\Delta T}
$$

$$
\begin{gathered}
\text { Step 3: Put in numbers and solve } \\
\begin{array}{c}
a=\frac{\Delta V}{\Delta T}=\frac{V_{f}-V_{i}}{\Delta T}=\frac{10-40}{5} \\
a=\frac{-30}{5}=-6
\end{array}
\end{gathered}
$$

Step 4: Add units Neg.means

Negative acceleration means an object is slowing down OR speeding up in the negative direction. Slowing down is also called "deceleration".

Distance and Acceleration An object that is accelerating will travel farther each second.
Constant Speed—Equal Distance Positive Acceleration—Increasing Distance

Points are equal distance, so velocity is constant.
Since the velocity is constant, the initial and final velocity are equal and the acceleration equals zero.

- • • • • • • • •

The distance between the points is increasing, so velocity is increasing. The object is accelerating: traveling faster each second and covering more distance every second.

Measuring Acceleration

To measure an object's acceleration you need to measure the object's velocity before and after the acceleration.

If the object starts at rest you know that $V_{i}=0 \mathrm{~m} / \mathrm{s}$. If the object stops you know that $V_{f}=0 \mathrm{~m} / \mathrm{s}$.

Measure V_{i} (Initial Velocity)

$$
\begin{gathered}
V_{i}=\frac{\Delta D}{\Delta T}=\frac{4 \mathrm{~m}}{1 \mathrm{sec}} \\
V_{\text {initial }}=4 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Measure ΔT
(Time it took to Accelerate)

Measure V_{f} (Final Velocity)

$$
\begin{aligned}
& a=\frac{V_{f}-V_{i}}{\Delta T}=\frac{8-4}{2} \\
& V_{\text {initial }}=\frac{4}{2}=2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{gathered}
V_{f}=\frac{\Delta D}{\Delta T}=\frac{8 \mathrm{~m}}{1 \mathrm{sec}} \\
V_{\text {final }}=8 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Name: \qquad
Period: \qquad

Speed (S) or Velocity (V) \quad Scalar (S) or Vector (V)	Mass, Time, Distance, Velocity, or Acceleration?
\qquad A bike goes $25 \mathrm{~m} / \mathrm{s}$ toward \qquad 40 mph toward Dallas. main street. \qquad $3 \mathrm{~m} / \mathrm{s}^{2}$ to the left. \qquad A person walks 4 mph . \qquad 10 meters up the hill.	-2 hrs -5 sec 8 kg $-3 \mathrm{~m} / \mathrm{s}$ $-\quad 9 \mathrm{mph}$ $-\quad 4 \mathrm{~m} / \mathrm{s}^{2}$ $-6 \mathrm{mph} / \mathrm{sec}$ -12 m $-\quad 1 \mathrm{in}$
___ bird flies 100 mph duesouth. \quadDirection matters. No direction is needed	Object A \square
Accelerating? Yes, No, or Maybe? \qquad At constant velocity. \qquad Going $5 \mathrm{~m} / \mathrm{s}$ then going $3 \mathrm{~m} / \mathrm{s}$. \qquad A car going around a corner. (see graphic at right). \qquad At constant speed. \qquad Stopping. \qquad A car at rest.	Object C Object D Choose which of the above applies to the following \qquad Constant speed. \qquad Distance increases \qquad Positive acceleration. \qquad Starts at rest. \qquad At constant velocity. \qquad Is stopping. \qquad Accelerating. \qquad Constant direction. \qquad Decelerating. \qquad Negative acceleration. \qquad Acceleration $=0$. \qquad $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{f}}$

___ Which one will go faster?
___ Which one will take more time to reach a high speed?
___ If they start at rest, which one will reach $40 \mathrm{~m} / \mathrm{s}$ first?
__ Which one goes farther (longer distance)?
__ Which one will be 100 m away sooner?

A person starts running from $2 \mathrm{~m} / \mathrm{s}$ to $6 \mathrm{~m} / \mathrm{s}$ in 2 seconds.
Calculate the person's acceleration.

Name: \qquad
Period: \qquad

