\qquad
\qquad

Speed is how fast something is moving. Precisely, it is how far an object travels in a certain amount of time. The standard metric units are meters per second $(\mathrm{m} / \mathrm{s})$, but any units of distance divided by time will work (like miles per hour [mph] or cm per sec [cps], etc).

Speed equal change of distance (distanced traveled) divided by change of time.

Where $\Delta \mathrm{D}=\mathrm{D}_{\text {final }}-\mathrm{D}_{\text {initial }}$

Ex. A plane flies 200 meters in 5 sec. Calculate its speed.

Step 1: Variables $\mathrm{S}=$ \qquad
$\Delta \mathrm{D}=200 \mathrm{~m}$
$\Delta \mathrm{T}=5 \mathrm{sec}$
Step 2: Formula
$S=\frac{\Delta D}{\Delta T}$

Step 3: Put in numbers and solve

$$
\begin{gathered}
S=\frac{\Delta D}{\Delta T}=\frac{200}{5} \\
S=40
\end{gathered}
$$

Step 4: Check units
$S=40 \mathrm{~m} / \mathrm{sec}$

Why we use change of distance:
A tree 4 m away for 2 sec has a speed of zero — it hasn't moved. That's why we have to use $\Delta \mathrm{D}$ (change of distance) distance (D).

An object has to be moving to have speed.

Physics Explains Mathematics: If $\Delta T=0($ in $S=\Delta D / \Delta T)$, then an object is in two places at once, which is impossible. This is why dividing by zero is undefined: it makes no physical sense!

Speed is proportional to distance:
A faster object goes farther, in the same amount of time.

Speed is indirectly proportional to time:
A faster object travels the same distance in less time.

A slower object can travel the same distance as a faster object, it just takes more time. A fast object travels the same distance faster.

Constant Speed

If an object moves at constant speed, it travels the same amount of distance each second. Notice that there is equal space between each dot.

Each dot represents an object's position at regular time intervals (time is constant).

Measuring Speed

To measure speed you must measure the distance traveled and the elapsed time.

Measure distance in meters using a meter stick or measuring tape.

Measure time with a stopwatch or with photogates.

Photogates (which start and stop when an object breaks beams of light) are a very accurate and precise method of measuring time.

Name: \qquad
Period: \qquad

1. Speed	A. How far an object moves between two positions.	1. Slow speed	A. An object that travels a long distance quickly.	
2. Distance Traveled	B. When an object covers equal amounts of time each second.	2. Fast speed	B. Can travel a long distance, but requires a lot of time.	
3. Elapsed Time	C. The rate of how fast an object travels a particular distance.	3. Photogate 4. Directly	C. Uses a beam of light to start and stop a timer.	
4. Δ	D. How many seconds it takes for an event to occur.	Proportional	D. One quantity increases as another quantity increases.	
5. Constant Speed	E. Delta: means "change of".	5. Indirectly Proportional	E. One quantity decreases as another quantity increases.	
Will Speed Increase or Decrease?		Mark these as Speed, Distance, Time, or Other		
\qquad Distance is constant and time increases.\qquad Time is constant and distance decreases.\qquad Time is constant and distance increases.\qquad Distance is constant and time decreases.		$5 \mathrm{~mm} / \mathrm{sec}$ 10 inches$50 \mathrm{~m} / \mathrm{s}^{2}$	$\begin{array}{ll}20 \text { meters } / \mathrm{sec} & -15 \mathrm{ft} / \mathrm{min} \\ 228 \text { meters } & -78 \mathrm{sec} \\ 8 \text { minutes } & 6 \text { Newtons }\end{array}$	
True or false (and why): "A fast car goes farther."				
Can a slow object travel as far as a fast object? Explain.		1. Is the above motion at constant speed? 2. Why or why not?		
Why do we have to use change of distance ($\Delta \mathrm{D}$) instead of just distance (D)?		3. Each dot $=1 \mathrm{sec}$. How long did it take to go 15 m ? 4. Calculate the object's speed.		
		5. How would the dots change if it were moving faster?		
A bike moves 50 m in 10 seconds. Calculate the speed of the bike.		A car travels 200 miles in 4 hours. Calculate the car's speed.		
Step 1: Variables: $\begin{aligned} & \mathrm{S}= \\ & \Delta \mathrm{D}= \\ & \Delta \mathrm{T}= \end{aligned}$	Step 3: Plug in numbers and solve:	Step 1: Variables: $\begin{aligned} & \mathrm{S}= \\ & \Delta \mathrm{D}= \\ & \Delta \mathrm{T}= \end{aligned}$	Step 3: Plug in numbers and solve:	
Step 2: Formula:	Step 4: Give answer with units:	Step 2: Formula:	Step 4: Give answer with units:	
A car travels $60 \mathrm{~m} / \mathrm{s}$ for 10 secs . Calculate how far it traveled.		On holiday, a family travels from Meyerville (10 miles away) to Sprytown (70 miles away), in 3 hours. Find their speed.		
Step 1:	Step 3:	Step 1:	Step 3:	
	Step 4:	Step 2:	Step 4:	

Period: \qquad

