\qquad
\qquad

Position vs. Time Graphs

A Position vs. Time graph shows where an object is at a particular time. The slope of a position vs. time graph shows the speed of an object. A steeper line shows faster speed. A downward line means negative speed (moving left or coming back).

A steeper line = a faster speed.

Object A travels 30 m in 5 seconds. Line A shows fast positive speed.

$$
S_{\text {LineA }}=\frac{\Delta D}{\Delta T}=\frac{30}{5}=6 \mathrm{~m} / \mathrm{s}
$$

Object B travels 30 m in 10 seconds. Line B shows slow positive speed.

$$
S_{\text {Line } B}=\frac{\Delta D}{\Delta T}=\frac{30}{10}=3 \mathrm{~m} / \mathrm{s}
$$

Object C stays 15 m away.
Line C shows a speed of zero.

$$
S_{\text {LineC }}=\frac{\Delta D}{\Delta T}=\frac{0}{10}=0 \mathrm{~m} / \mathrm{s}
$$

Object D travels -20 m in 10 seconds. Line D shows slow negative speed. $S_{\text {LineD }}=\frac{\Delta D}{\Delta T}=\frac{-20}{10}=-2 \mathrm{~m} / \mathrm{s}$

Scientists have rules for choosing which variable is graphed on which axis. This allows scientists to understand how an experiment was conducted just by reading the graph.

Conventions: X-axis (horizontal): Independent or manipulated variable. Y-axis (vertical): Dependent or responsive variable.

Independent vs. Dependent

The independent variable is not affected by the changing dependent variable. The dependent variable changes as the independent variable

Manipulated

vs. Responsive

Sometimes it is hard to determine which is the independent variable. In these cases, the variable that you are manipulating (varying) will graphed on the x -axis.

Time (as in "a particular moment in time") is always an independent variable (x-axis) because nothing stops time.
Time does not change with speed; speed changes over time.

Duration (how long it takes) can be dependent (y-axis). Ex. The period of a spring (how long it takes to move back and forth) changes as more mass is added. Mass is independent, not period of time.

The above object's acceleration changes (responds) as the force is changed (manipulated).

The manipulated variable is the one you are changing in your experiment and is often the experimental variable.

Meaning of Slope Changes

The slope of a position vs. time graph is speed. The slope of a velocity vs. time graph is acceleration. Yet for some graph, the slope has no physical meaning.

To figure out what the slope of a graph means: divide the y-axis units by the x-axis units to find the units for the slope.

$$
\begin{aligned}
& \text { Meaning of Slope }=\frac{\text { rise }}{\text { run }} \\
& \qquad=\frac{\text { units of } \mathrm{y} \text {-axis }}{\text { units of } \mathrm{x} \text {-axis }}
\end{aligned}
$$

This graph shows the change of velocity over time which is acceleration.
Slope $=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{\mathrm{m} / \mathrm{s}}{\mathrm{s}}=\mathrm{m} / \mathrm{s}^{2}=$ acceleration

This graph shows the change of acceleration over time which is undefined.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{\mathrm{m} / \mathrm{s}^{2}}{\mathrm{~s}}=\mathrm{m} / \mathrm{s}^{3}=?
$$

Name:
Period: \qquad

What does the slope of this line show? \qquad
How much time does it take Object A to travel 100 m ? \qquad
How much time does it take Object B to travel 100 m ? \qquad
Which Object (A or B) has the faster velocity? \qquad
Object C starts where? \qquad Object C ends where? \qquad
Which line shows negative speed? \qquad
Which line shows positive speed?
Which line shows an object at rest? \qquad What is Object D's initial position? \qquad

When was the object moving at $150 \mathrm{~m} / \mathrm{s}$? \qquad
How fast is the object going after 10 seconds? \qquad
What was the initial velocity of the object? \qquad
How much speed does it gain in the first 5 seconds? \qquad
Find the slope of the graph (must show work) \qquad

What does the slope you just found stand for? \qquad

Which is the independent variable? \qquad
Which is the dependent variable? \qquad
Where was the object at 4 seconds? \qquad
Where did the object begin? \qquad
Find the slope of the graph (must show work)

What does the slope you just found stand for? \qquad

