eriod:	od: Simple Lens Equation Problems	6.
10/	The following examples can be done without a calculator, using common denominators. In preparation you need to which devices are convergent and divergent and when the focal length is negative. Notes: "Optics Basics" and "L Mirror Equations".	
1.	 A thin convergent lens has a focal length of 10 cm. An 8 cm object is placed 30 cm to the left of the lens. Calculate the distance to the image. 	
2.	 A 2 cm tall object is 4 cm in front of a concave mirror that has a focal length of 5 cm. A. Calculate the distance to the image. 	
	B. Describe the image (real, virtual, magnified, reduced).	
3.	 A 4 cm object is 2 cm to the left of a divergent mirror. The image is seen 1.5 cm to the right of the mirror. A. Before you calculate, describe the image. 	
	B. Calculate the focal length of the mirror.	
4.	A concave mirror has an 8 cm focal length. A 20 cm real image is projected 40 cm to the left of the mirror. A. Calculate the distance to the object.	
	B. Calculate the magnification of the mirror.	
	C. Calculate the height of the object.	
5.	 A 4 cm object is 6 cm to the left of a concave lens. The image is 1.5 cm on the left side of the lens. A. Calculate the focal length of the lens. 	
	B. Calculate the height of the image.	
6.	 A 0.08 m object is 0.12 m in front of a convergent mirror. The image focuses on a screen 0.24 m to the left of the ror. Calculate the height of the image. 	ne mir-

7. A 4 cm object is 10 cm in front of a convex lens. The image is found to be 6 cm tall and inverted. Calculate the focal length of the lens.

- 8. A convex mirror has a focal length of 4 cm. A 6 cm object is 12 cm to the left of the mirror. Calculate the distance to and height of the image.
- 9. A convex lens has a focal length of 4 cm. The 2 cm object is 3 cm to the left of the lens. Calculate the magnification of the lens.
- 10. A concave lens has a focal length of 3 cm. The object is 6 cm to the left of the lens and is 4 cm tall. Calculate the height of the image.
- 11. A 3 cm tall object is 8 cm from a concave mirror. The image is 9 cm tall and projected. Calculate the distance to the image and the focal length of the mirror.
- 12. An 0.03 m object is 0.20 m in front of a convergent mirror that has a 0.10 m focal length. Calculate the height and distance to the image.

Case 1: If the object is located beyond 2F:

Description of Image:

- O: Upright or Inverted
- S: Magnified or Reduced
- T: Real or Virtual

Case 2: If the object is located at 2F:

Description of Image: Location:

O: Upright or Inverted

S: Magnified or Reduced

T: Real or Virtual

Case 3: If the object is located between 2F and F:

Description of Image:

Location:

O: Upright or Inverted