$\qquad$
$\qquad$

Accuracy: $\qquad$

Precision: $\qquad$


## Classification of Matter

Much of science involves describing the universe. To do this we must be able to classify the things we encounter.

D Anything that has mass and takes up space we call $\qquad$ .
Everything you can touch or hold we call matter, but only most of what you can see is matter (lightening is not, it is energy).
E


| 1. Substance or nonmixture | a. Made up be physic | pes of matter that can rated. | 1. Meter | a. Divide by 1000 . This is the smallest standard metric prefix. |
| :---: | :---: | :---: | :---: | :---: |
| 2. Mixture | b. Two sa | ht not be the same. | 2. Kilo- | b. The standard metric unit of mass; it is very small. |
| 3. Heterogeneous Mixture | c. Two sam makeup. | have the same | 3. Gram | c. The standard metric unit of length; equal to 3.3 feet. |
| 4. Matter | d. Has on | of atom in the same. |  |  |
| 5. Element | e. Contain not be ph | ds of atoms that canseparated. | 4. Milli- | d. The standard metric unit of volume. Used to measure liquids. |
| 6. Homogeneous Mixture | f. Cannot | ted by physical means. | 5. Centi- | e. Means divide by 100. Easy to remember by the word cent-ury. |
| 7. Compound | g. A classi mass and | of anything that has space. | 6. Liter | f. Prefix that means multiply by 1000 . |
| List heterogeneous and homogenous mixtures for: |  |  | Mark these as elements (E) or compounds (C): |  |
| Mixture | Heterogenous | Homogenous |  |  |
| Jello |  |  | Water ( $\mathrm{H}_{2} \mathrm{O}$ ) | Carbon Dioxide ( $\mathrm{CO}_{2}$ ) |
| Ice cream |  |  | Hydrogen (H) | Sodium (Na) |
| Soup |  |  | Helium (He) | - Silver (Ag) |

## Look at each target and decide whether the "hits" are accurate, precise, both accurate

 and precise, or neither accurate nor precise: (Note: An accurate "hit" is a bulls eye!)

| Team 1 | Team 2 | Team 3 | Team 4 | Team 5 | Team 6 | Team 7 | Team 8 | Team 9 | Team 10 | Team 11 | Team 12 | Team 13 | Team 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.65 cm | 2.75 cm | 2.80 cm | 2.77 cm | 2.60 cm | 2.65 cm | 2.68 cm | 2.60 cm | 2.70 cm | 2.80 cm | 2.75 cm | 2.65 cm | 2.62 cm | 2.78 cm |

A group of students worked in separate teams to measure the length of an object. Their data is listed above.

- The average length is $\qquad$ cm .
This is the mean or average.
- Subtract the highest value from the lowest value: $\qquad$ cm . This is the range or spread.
- Divide this number by 2 : $\qquad$ cm . This is the approximate $\pm$ range from the average.
- The precision of the measurement can be shown as average $\pm$ range.
The precision of the measurement was
$\qquad$ $\pm$ $\qquad$ cm.

A second group of students obtained the above data:

- The average length is $\qquad$ cm .
- The precision of the measurement was
$\qquad$ $\pm$ $\qquad$ cm .
- In comparing groups, the first or the second, which group was more precise or was the precision the same? Justify your answer.

