Name: \qquad

Read pages 52-57 and complete the notes below.
What is gravity? \qquad
What does gravity depend on? \qquad
At what rate do all object accelerate while falling here on the planet Earth? \qquad
Why is gravity weaker on Mars than Earth. \qquad

Why does the moon orbit Earth? \qquad

What is the law of universal gravitation? \qquad

What is the Equation of Universal Gravitation? \qquad What two things are required to be able to calculate the gravitational pull on two objects? \qquad
What is Friction and what causes it? \qquad
List 4 types of Friction. \qquad

How does Friction affect acceleration? \qquad

Friction
Friction is a force that opposes moving objects and occurs any time objects touch.
Friction causes heat and takes energy away from moving objects and machines.

The object and the table heat up as the two object rub against each other.

Air friction
(air resistance) occurs when objects move thru air. Air friction increases with speed.

Friction can be helpful. A car use the friction of its tives to turn corners.

What is gravity? Does gravity increase or decrease? \qquad If you increase the mass of one of the objects? \qquad If you decrease the distance between the two objects? \qquad If you decrease one of the masses? \qquad If the objects are farther apart?	Give an example of good friction.		
	Give an example of bad friction.		
	Newtons m/s Joules a kg $\mathrm{m} / \mathrm{s}^{2}$ kg *ms $\mathrm{F}_{\text {net }}$ m	A. Variable for acceleration B. Sum of all forces C. Unit for force D. Unit for speed E. Variable or mass F. Unit for acceleration G. Unit for energy H. Unit for mass I. Unit for momentum	
If an object is not touching a table is there friction between them?			
What is another name for air friction?			
Friction always causes what?			

Balanced or unbalanced forces?
10 N left and 5 N right?

An object accelerating?
An object at constant speed?
An object at rest?

Balanced or unbalanced forces?
Calculate the net force and
acceleration of the object.

Which falls faster: heavy or light objects?
Why?
Will it accelerate faster or slower? If you increase an object's mass. If you increase the force on the object. is a force that resists motion between two surfaces that are in contact. The strength of the gravitational force between two objects depends on which two things? Forces that cancel each other are called ___ forces. A change in motion is described by __ A ball is thrown straight up in the air. According to Newton's first law of motion, what is the reason for the ball falling back to Earth?

When unbalanced forces act on an object, \qquad -.
A. the object accelerates
B. friction becomes greater than the net force
C. the object speeds up
D. he net force is zero

Mass and velocity values for a variety of objects are listed below. Rank the objects from smallest to greatest inertia

Which has more inertia:
A 50 kg object or a 10 kg object?
A 30 kg object on the earth or in space?
A 20 kg object going $50 \mathrm{~m} / \mathrm{s}$, or a 30 kg object at rest.
What is the difference between mass and weight?
Which changes in space?
Mass or Weight:_ $20 \mathrm{~N} ; \quad 30 \mathrm{~kg}$?
A 4 kg object accelerates $12 \mathrm{~m} / \mathrm{s}^{2}$ to the left, find the force on it.

A 30 N net force pulls to the right on a 5 kg object. Find its acceleration.

Calculate the weight of a 12 kg object.

If a wagon is being pulled with 30 N of force to the right, if the forces stayed constant, how much friction would be needed to keep the wagon moving at a constant speed?

Which of the two above objects applies: $\mathrm{M}_{1}, \mathrm{M}_{2}$, both, or neither?
A. Could be at rest.
B. \quad Could be accelerating.
C. \quad Could be moving to the left.
D. \quad Has a net force.
E. \quad Is at constant speed.
F. \quad Could be moving.
G. \quad Could be accelerating to the right.
H. \quad Could be moving up.
I. \quad Could have a velocity $=0 \mathrm{~m} / \mathrm{s}$.
J. \quad Has no net force. Could be at rest.
B. Could be accelerating.
C. Could be moving to the left.
D. Has a net force.
E. Is at constant speed.
F.
G. ___Could be accelerating to the right.
H. Could be moving up.
J. _Has no net force.

