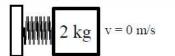
Period:

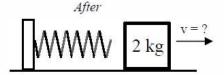
4.2

The Law of Conservation of Energy states:

"Energy is never created nor destroyed just transformed into other forms of energy." OR $\Sigma E_{before} = \Sigma E_{after}$

Yet if energy is added to or removed from the system the total amount of energy has changed. This can only be accomplished by external forces, which is work. If energy is added: positive work was done on the object. If energy is removed: negative work was done on the object. Therefore, work must be accounted for in our equation.

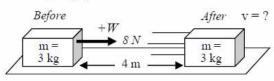

Law of Conservation of Energy


$$\Sigma E_{before} \pm W = \Sigma E_{after}$$

Solving Conservation of Energy Problems

Using Conservation of Energy, many complicated problems can be solved simply.

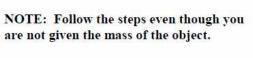
Before

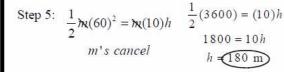

Example 1: A 2 kg object compresses a spring 0.5 m. If k = 72 N/m, how fast is the object going after the spring is released?

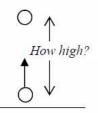
- Step 1: Identify the energies before and after.
- **Step 2**: Decide if energy was added (+W), removed (-W), or just transformed (W = 0).
- **Step 3**: Put the information from steps 1 and 2 into the Conservation of Energy formula.
- Step 4: Put in the formulas for the different kinds of energy or for work.
- Step 5: Put in all of the given information and solve.

- Step 1: $E_{before} = PE_{el} (a compressed spring)$ $E_{after} = KE (it is moving)$
- Step 2: No forces—energy is just transformed.

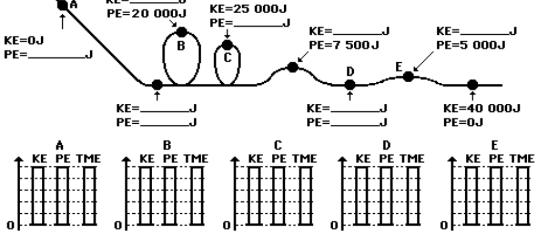
 W = 0 (no work added or removed)
- Step 3: $\Sigma \mathbf{E}_{before} \pm \mathbf{W} = \Sigma \mathbf{E}_{after}$ $P\mathbf{E}_{el} + 0 = K\mathbf{E}$
- Step 4: $(\frac{1}{2})kx^2 = (\frac{1}{2})mv^2$
- Step 5: $\frac{1}{2}72(0.5)^2 = \frac{1}{2}2(v)^2$ $36(.25) = v^2$
- $9 = v^2$ $v \in 3m/s$


Example 2: A 3 kg mass at rest on the ground is pushed by an 8 N force for 4 m. How fast is the mass going afterwards?


- Step 1: $E_{before} = 0$ (at rest on the ground) $E_{after} = KE$ (it is moving)
- Step 2: Energy is added: +W
- Step 3: $\Sigma \mathbf{E}_{before} \pm \mathbf{W} = \Sigma \mathbf{E}_{after}$ $0 + \mathbf{W} = \mathbf{K}\mathbf{E}$
- Step 4: $0 + \text{Fd} = (\frac{1}{2})\text{mv}^2$


Step 5:
$$0 + 8(4) = \frac{1}{2}3(v)^2$$
 $21.3 = v^2$
 $32 = 1.5v^2$ $v = 4.6\text{m/s}$

Example 3: An object is thrown into the air going 60 m/s. How high up does it go?


- Step 1: $E_{before} = KE \ (above the ground)$ $E_{after} = PE \ (it is falling)$
- Step 2: No work, energy is transferred, so. W = 0
- Step 3: $\Sigma \mathbf{E}_{before} \pm \mathbf{W} = \Sigma \mathbf{E}_{after}$ KE + 0 = PE
- Step 4: $(\frac{1}{2})$ mv² = mgh

NOTE: Often you don't need the mass. It may cancel.

1. PE, KE, PEel, W, or No Energy?	2. Is Energy Added (+W), Removed (-W), or Transferred (T)
Compressing a spring An object above the ground. Friction acting on an object. An object moving. An object at rest on the ground. An object as it is falling.	Slowing down an object. A moving object compressing a spring. into the air. Lowering an object to the ground slowly. An object falling. Speeding up an object. A moving object compressing a spring. A force compressing a spring. An object slides up a frictionless ramp.
For each of the following, develop the Conservation of Energy Equation	
A. A moving object speeds up. $E_{before} = \underbrace{KE}_{ext} Work? = \underbrace{+W}_{ext} E_{after} = \underbrace{KE}_{ext}_{ext}$ Conservation of Energy Equation: $\underbrace{KE + W = KE}_{ext}_{ext}$ B. An object is dropped. There is air friction. $E_{before} = \underbrace{Work?}_{ext} = \underbrace{E_{after}}_{ext} = \underbrace{Conservation of Energy Equation:}_{ext}_{ext}_{ext}$ C. A moving object compresses a spring. $E_{before} = \underbrace{Work?}_{ext} = \underbrace{E_{after}}_{ext} = \underbrace{Conservation of Energy Equation:}_{ext}_{ext}_{ext}_{ext}$ D. An object is thrown up, going 2 m/s. How high does it go? $E_{before} = \underbrace{Work?}_{ext} = \underbrace{E_{after}}_{ext}_{ex$	E. A relaxed spring is compressed. $E_{before} =Work? =E_{after} = $
Conservation of Energy Equation: 4. A 5 kg mass at rest on the ground is raised up to 15 m. Find the work that was done on the object. A. E _{before} = Work? = E _{after} = B. Conservation of Energy equation: C. Solve.	Conservation of Energy Equation: 5. A 8 kg mass going 2 m/s compresses a spring 0.5 meters. Find the spring constant of the spring. A. E _{before} = Work? = E _{after} = B. Conservation of Energy equation: C. Solve.
 6. A 6 kg mass going 4 m/s is slowed to 3 m/s by a 2 N force. For how much distance did the force act? A. E_{before} = Work? = E_{after} = B. Conservation of Energy equation: C. Solve. 	 7. A mass at rest is dropped from 12 m in the air. How fast is it going 2 m above the ground? A. E_{before} = Work? = E_{after} = B. Conservation of Energy equation: C. Solve.
8. Use the law of conservation of energy (assume no friction nor air resistance) to determine the kinetic and potential energy at the various marked positions along the roller coaster track below. Finally, fill in the bars of the bar charts for positions A, B, C, D, and E. KE=	

