Advanced Forces Practice

Period:

1. Match the following equations with the correct masses. These equations could be in either the x or y-direction. There is one duplicates.

- A. T = ma
- B. ____ $T-T-F_W = ma$
- C. _____ $F_N F F_W = ma$
- D. $T T\cos\theta = 0$
- E. ____ $T-F_f = ma$
- F. $F_{wsin}\theta = ma$
- G. ____ $F_N + F F_W = ma$
- H. $F_N F_W = mv^2/r$
- I. $_{\text{Tsin}\theta} F_{\text{W}} = 0$
- J. $F_N + F F F_W = ma$
- K. ____ $T F_f = 0$
- L. ____ $T-T-F_f = ma$
- M. $F_W = ma$
- N. ____ $T-F_W = ma$
- O. $F_N + F_W = mv^2/r$
- P. $F_{N} F_{W} = ma$

At constant speed; with friction; looking down on the object.

No friction

- Q. _____F T = ma
- R. $_{\rm F_N} = {\rm mv^2/r}$
- S. $F_N mgcos\theta = ma$
- T. $F_W \sin \theta T = ma$

- 45 N 15kg
- A 15 kg mass has a 45 N force pulling on it at an angle of 48° above the horizon. The mass is on a surface that has the following coefficients of friction: $\mu_s = 0.34$ and $\mu_k = 0.16$. A. Decide if it will move, if it starts at rest.
 - B. Calculate the acceleration if it is already moving.

3. A. Calculate how heavy the 65 kg lady in the elevator feels.

C. What would a scale read if the elevator's cable was cut?

- A. Draw and label all of the forces acting on the mass.
- B. What is the acceleration of the object?
- C. Calculate the force of friction on the mass.

D. Calculate the coefficient of friction of the floor.

- 5. A 25 kg object has a velocity of -12 m/s and has an acceleration of +2 m/s².
 - A. Is the object moving to the left, to the right, or at rest?
 - B. Is the object speeding up or slowing down?
 - C. Are the forces balanced or unbalanced?
 - D. How do you know?
 - E. Which force is greater: F_1 or F_2 ?
 - F. Calculate the net force acting on the object.
 - G. Calculate the magnitude of force 2.

- 7. Slim Jim has a rope attached to an 40 kg box.
 - A. If the box is not moving or at constant speed, what is it's acceleration?
 - B. What is the tension in the rope?
 - C. If Slim Jim pulls the object up with an acceleration of 2.5 m/s², find the tension in the rope.
- Find the acceleration for each of the 5 kg masses below. On the right there is only one mass and Slim Jim pulls down with 200 N.

