\qquad
\qquad

Surface Friction

Friction $\left(F_{f}\right)$ - Friction opposes motion. If you are moving left, friction tries to stop you by pulling right and vice versa. We will be studying only the two types of surface friction.

Increasing Surface Friction

If you wanted to increase the friction on an object you could either put the object on a rougher surface or push down on the object, grinding it into the surface.
μ (pronouced "me-oo") is the coefficient of friction.
Rougher surfaces have higher μ 's.

Rubber on concrete has a high coefficient of friction of 1.0, so tires grip well.

The greater F_{N} is, the more the object is being ground into the surface, causing more friction.

Static Friction (F_{S})

Static friction is gripping friction. F_{5} tries to keep an object sticking to a surface. You must apply a force just greater than F_{5} to start the object sliding.

Since $9.9 \mathrm{~N}<10 \mathrm{~N}$, M won't slide.

Since $10.1 \mathrm{~N}>10 \mathrm{~N}, \mathrm{M}$ breaks
free and starts to slide.

Use F_{s} to decide if the object slides.
If $F>F_{s}$ it starts to slide. If $F<F_{s}$ it doesn't slide.

Remember: F_{s} never causes an object to start sliding on its own.

CAUTION!

An object can't be slipping and gripping at the same time. Never add F_{S} and F_{K}.

Kinetic Friction $\left(F_{K}\right)$

Kinetic friction is slipping friction. F_{K} tries to stop an object from slipping, to make it stop. Kinetic friction is usually less than static friction.

$8 N<9 N$, so M will slow down and eventually stop.
Use F_{k} to calculate acceleration, since an object must be moving to be accelerating.

If $F>F_{k}$ it keeps sliding and accelerates. If $F<F_{k}$ it will slow down and stop. If $F=F_{k}$ it will stay moving at constant speed.

Example: Calculate static and kinetic firction for a 4 kg mass sitting on a table where $\mu_{s}=0.45$ and $\mu_{k}=0.25$.

$$
\begin{aligned}
& \mu_{\mathrm{s}}=0.45 \\
& \mu_{\mathrm{k}}=0.25 \\
& \hline
\end{aligned}
$$

Solution:

Step 1) Calculate Normal Force (see "Normal Force" notes)

Since $\mathrm{a}_{\mathrm{y}}=0 \mathrm{~m} / \mathrm{s}^{2}$ and there are no other vertical forces, the normal force equals the weight of the object.
$\mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{W}}=4(10)=40 \mathrm{~N}$

Step 2) Calculate Static and Kinetic Friction

$$
\begin{array}{cc}
\mathrm{F}_{\mathrm{s}}=\mu_{\mathrm{s}} \mathrm{~F}_{\mathrm{N}} & \mathrm{~F}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{~F}_{\mathrm{N}} \\
\mathrm{~F}_{\mathrm{s}}=0.45(40) & \mathrm{F}_{\mathrm{k}}=0.25(40) \\
\mathrm{F}_{\mathrm{s}}=18 \mathrm{~N} & \mathrm{~F}_{\mathrm{k}}=10 \mathrm{~N} \\
\text { It takes } 18 \mathrm{~N} & \text { It takes } 10 \mathrm{~N} \\
\text { to start } M \text { sliding. } & \text { to } \text { keep } M \text { sliding. }
\end{array}
$$

$$
\begin{aligned}
& \mathrm{F}_{\text {applied }}=20 \mathrm{~N}, 4 \mathrm{~kg} \begin{array}{l}
\mathrm{F}_{\mathrm{S}}=18 \mathrm{~N} \\
\cline { 1 - 3 } \\
\mathrm{~F}_{\mathrm{k}}=10 \mathrm{~N}
\end{array} \\
& \begin{array}{cc}
\Sigma \mathrm{F}=\mathrm{ma} & -10=4 \mathrm{a} \\
-20+10=4 \mathrm{a} & \mathrm{a}=-2.5 \mathrm{~m} / \mathrm{s}^{2}
\end{array} \\
& \text { Use } F_{k} \text { because it } \\
& \text { is slipping when } \\
& \text { it accelerates. }
\end{aligned}
$$

1. Static (Fs) or Kinetic (Fk) Friction? Tries to stop an object when it's moving. How much force to keep an object sliding. Slows down a sliding object. How much it takes to start an object sliding. Car tires when they "spin out". Requires F_{N} to calculate. Calculate with μ_{k}.
\qquad Is greater.
On a playground slide. Sliding friction. Car tires normally. Gripping friction
\qquad Calculate with μ_{s}.
2. More or less friction?
A. \qquad On a rougher surface.
B. \qquad If F_{N} increases.
C. \qquad If the surface is smoother.
D. \qquad If μ is less.
E. \qquad If the object has more mass.
F. \qquad If you push down on the object.
G. \qquad If you pull up on the object.
H. \qquad If μ increases.

3. An object is moving to the left. Which way does friction act?
4. A force is pulling on an object to the left. Draw an arrow showing the direction of static friction.

5. If $\mathrm{F}_{\mathrm{N}}=50 \mathrm{~N}$ and $\mu_{\mathrm{s}}=.26$, find the force of static friction.
6. If $\mathrm{F}_{\mathrm{N}}=25 \mathrm{~N}$ and $\mu_{\mathrm{k}}=.13$, calculate kinetic friction.
7. A. How much force is necessary to start the 12 kg object moving?
B. How much force is necessary to keep it moving?
C. If it starts at rest, will it start sliding?
D. Calculate the acceleration of the object.

8. A. Does the object start sliding?
B. If not, how much extra force is necessary?
C. If it is moving calculate the acceleration of the object?

9. A. Calculate the normal force on the object.
B. Calculate both static and kinetic friction.
C. Does the object start moving?
D. Calculate the acceleration if it is moving.
$\mu_{\mathrm{s}}=.6 \quad \mu_{\mathrm{k}}=.3$

10. A. Does the 50 N increase or decrease F_{N} ?
B. Resolve the 50 N force into its x and y -components.
C. Calculate F_{N}.
D. Using F_{N}, calculate F_{s} and F_{k}.
E. Will the object slide?
F. Calculate the acceleration of the object if it does slide.
