Period:

Surface Friction

Friction (F_f) - Friction opposes motion. If you are moving left, friction tries to stop you by pulling right and vice versa. We will be studying only the two types of surface friction.

Increasing Surface Friction

If you wanted to increase the friction on an object you could either put the object on a rougher surface or push down on the object, grinding it into the surface.

 $\label{eq:me-oo} \begin{array}{l} \mu \mbox{ (pronouced "me-oo") is the coefficient of friction.} \\ \mbox{ Rougher surfaces have higher } \mu \mbox{'s.} \end{array}$

Ice has a very low coefficient of static friction of 0.1, so you slip easily.

Rubber on concrete has a high coefficient of friction of 1.0, so tires grip well.

CAUTION!

An object can't

be slipping and

gripping at the

same time. Never

add F_S and F_K .

The greater F_N is, the more the object is being ground into the surface, causing more friction.

By pushing down you increase F_N and increase pressure of the object against the surface.

Static Friction (Fs)

Static friction is gripping friction. F_s tries to keep an object sticking to a surface. You must apply a force just greater than F_s to start the object sliding.

M won't slide.

10.1 N $F_{\text{Static}} = 10 \text{ N}$

Since 10.1 N > 10 N, M breaks free and starts to slide.

Use \mathbf{F}_{s} to decide if the object slides.

If $F > F_s$ it starts to slide. If $F < F_s$ it doesn't slide.

Remember: Fs never causes an object to start sliding on its own.

Static Friction Normal Force (in N) (in N) $\mathbf{F}_{s} \leq \mu_{s} \mathbf{F}_{N}$ Coefficient of static friction (no units)

Example: Calculate static and kinetic friction for a 4 kg mass sitting on a table where $\mu_s = 0.45$ and $\mu_k = 0.25$.

Solution:

Step 1) Calculate Normal Force (see "Normal Force" notes)

Since $a_y = 0 \text{ m/s}^2$ and there are no other vertical forces, the normal force equals the weight of the object.

$$F_N = F_W = 4(10) = 40 N$$

4 kg

 $\mu_{s} = 0.45$

 $\mu_{\rm k} = 0.25$

Kinetic Friction (F_K)

Kinetic friction is slipping friction. F_K tries to stop an object from slipping, to make it stop. Kinetic friction is usually less than static friction.

8 N < 9 N, so M will slow down and eventually stop.

Use F_k to calculate acceleration, since an object must be moving to be accelerating.

If $F > F_k$ it keeps sliding and accelerates. If $F < F_k$ it will slow down and stop. If $F = F_k$ it will stay moving at constant speed.

Step 2) Calculate Static and Kinetic Friction

$F_s = \mu_s F_N$	$F_k = \mu_k F_N$
$F_s = 0.45(40)$	$F_k = 0.25(40)$
$F_s = 18 N$	$F_k = 10 N$
It takes 18 N	It takes 10 N
to start M sliding.	to keep M sliding.
E	

$\Sigma F = ma$	-10 = 4a $a = -2.5 \text{ m/s}^2$	Use F_k because it
-20 + 10 = 4a		is slipping when it accelerates.

