

Period:

Covalent Compounds

When two nonmetals bond neither one is willing to lose their electrons. Why? Because they are too close to having a full octet of valence electrons. So they share.

compound

(like sugar)

conduct electricity.

compound

(like salt)

electricity.

All sections marked with a section are considered essential concepts and must be completed to receive full credit on WS.

 X's Covalent Ionic Diatomic Molecule 8 Valence Electrons Wrong X • × O X • × O × <th> A. A bond of negativel charged atoms. B. Used instead of dots different atom's vale C. A bond where electric D. Number of electrons covalent compound E. A molecule of two a element. </th> <th>to show a ence electrons. rons are shared. s each atom in a has after sharing. toms of the same</th> <th> Electrolyte Double Bond Triple Bond Line () Single Bond compounds and the Right </th> <th> A. When 4 valence electrons are shared. B. Used instead of dots to simplify the writing on bonds. Means 2 electrons. C. Shows 6 valence electrons being shared. D. Something dissolved in water that allows electricity to flow. E. Occurs when 2 valence electrons are shared in a covalent compound. <i>n draw them correctly.</i>. </th>	 A. A bond of negativel charged atoms. B. Used instead of dots different atom's vale C. A bond where electric D. Number of electrons covalent compound E. A molecule of two a element. 	to show a ence electrons. rons are shared. s each atom in a has after sharing. toms of the same	 Electrolyte Double Bond Triple Bond Line () Single Bond compounds and the Right 	 A. When 4 valence electrons are shared. B. Used instead of dots to simplify the writing on bonds. Means 2 electrons. C. Shows 6 valence electrons being shared. D. Something dissolved in water that allows electricity to flow. E. Occurs when 2 valence electrons are shared in a covalent compound. <i>n draw them correctly.</i>.
$P \equiv # 0$ $C = # 0$ $Cl - # 0$ $I = # 0$	of electrons: <u>8</u> Fu of electrons: <u> </u>	1? <u>Yes</u> . 11? 11? 11?	O - # of $N = # of$ $= Si - # of$ $-S - # of$	y have a full number of valence electrons. electrons:Full? electrons:Full? electrons:Full? Dot Diagram for molecular Oxygen (O ₂). Short hand
Using Lewis Dot Diagrams to predict how Oxygen and Fluorine will combine. Short hand Are these Electrolytes? Yes or No? NaCl Li ₂ S CO ₂ Al ₂ O ₃ MgCl ₂ SeO NBr ₃ FeO BeO Li(NO ₃)			Using Lewis Dot Diagrams to predict how Nitrogen and Bromine will combine. Short hand In this setup, is the dissolved compound ionic or covalent? How do you know?	