Name: $\qquad$

Group: $\qquad$

## Measuring Speed

To measure speed you must measure the distance traveled and the elapsed time.

In the green lab manual Investigations:

1. Follow the instructions on how to set up the timer and photogates on pages 2-3.
2. Follow the instruction on how to set up the ramps and photogates on page 6 .
3. Determine how to find the speed of your cars by performing sections 1 and 2 of lab 1.3 on page 8 .
4. Fill out the chart below and answer the following questions with the data you recorded in your chart.

## Speed, Disatance, and Time Data

| Distance from A to B | Time from A to B (sec) | Speed |
| ---: | ---: | ---: |
| (feet) | (feet $/ \mathrm{sec})$ |  |
| $(\mathrm{cm})$ | $(\mathrm{cm} / \mathrm{sec})$ |  |
| (inches) | $(\mathrm{in} / \mathrm{sec})$ |  |

Calculate the speed in $\mathrm{ft} / \mathrm{sec}, \mathrm{cm} / \mathrm{sec}$ and $\mathrm{in} / \mathrm{sec}$ and write the results in the table.
c. Is it possible that a speed of 254 and a speed
b. Which is the fastest speed of the three, or are they all the same speed? of 100 could be the same speed? Explain



Types of Speed


## Instantaneous:

Constant:
Initial:
Final:
Each dot represents an object's position at regular time intervals (time is constant).


## Average:

Speed is proportional to distance:
A faster object goes farther, in the same amount of time.


200 m in 10sec

Doubling the distance, doubles the speed.

Speed is indirectly proportional to time:
A faster object travels the same distance in less time.


A slower object can travel the same distance as a faster object, it just takes more time. A fast object travels the same distance faster.
Measuring Speed

To measure speed you must measure the distance traveled and the elapsed time.

Measure distance in meters using a meter stick or measuring tape.

Measure time with a stopwatch or with photogates.

Photogates (which start and stop when an object breaks beams of light) are a very accurate and precise method of measuring time.


$$
S=\frac{\Delta D}{\Delta T}=\frac{25 \mathrm{~m}}{5 \mathrm{sec}}=5 \mathrm{~m} / \mathrm{s}
$$



