Speed

Grade Homework

- Gerc

Lab Time

- You will be learning how to use the cars, ramps and timers
- The pages in the lab book are on your worksheet
- Read the instructions and lab, carefully
- Equipment Needed
- 1 tower 1 timer/powersupply 2 photogates 1 ramp 1 car
- Lab Hints
- Do not put the ramp at the highest point possible. Midway down the tower will be fine
- Be aware of the position of the timers at the beginning
- Take several "trial" runs in order to get an average speed
- After the trial, take all of your readings before you move the car again

Motion

- How do you know when something is in motion?
- When something changes position
- Traveling from one place to another
- Motion is described by the change in position and the speed

Motion is Relative

- How can you tell you are in motion when you are in a car?
- How can you tell you are in motion while you are in an airplane?

Motion is Relative

- You can tell something moved if it has changed position relative to a stationary object
- Reference Point- stationary object- helps you know how far something moved
- Relative motion- motion may not be obvious
- Sitting in your chair, you are not moving relative to the room
- You are moving relative to other planets

Speed

- How did you define speed?
- How is it measured?
- What units are used in physics?

Word/Term: SPEED	Drawing:
Describe in own words:	
Textbook Definition:	
	Rate mV Understanding: 1 234
How I remember it:	Reflections:

Speed and GERC

- The formula for Speed is:
$\mathrm{s}=\mathrm{d} / \mathrm{t}$
The unit for speed is meters/second (m / s)
s - speed (m/s)
d - distance (m)
t - time (s)

Big Bang Help

Types of Speed

- Instantaneous Speed- The rate of Motion at any given time
- How fast is the Flash and the car moving right now?

- Constant Speed
- A speed/that doesn't vary

Each dot represents an object's position at regular time intervals (time is constant).

- Initial Speed
- The speed of an object at the beginning of a formula
- A car standing still at a stoplight
- A car moving $60 \mathrm{~km} / \mathrm{h}$ at the start line

Types of Speed

- Final Speed
- The speed of an object at the end of a problem
- Average Speed
- Total distance traveled divided by the amount of time it took to travel that distance
- Used when the rate of motion varies a great deal

Changes in Speed

Speed is proportional to distance:
A faster object goes farther, in the same amount of time.

Doubling the distance, doubles the speed.

$$
S_{1}=\frac{\Delta D}{\Delta T}=
$$

$$
S_{2}=\frac{\Delta D}{\Delta T}=
$$

Doubling the time, halves the speed.

Speed is indirectly proportional to time:
A faster object travels the same distance in less time.
$S_{1}=\frac{\Delta D}{\Delta T}=$
$S_{2}=\frac{\Delta D}{\Delta T}=$
A slower object can travel the same distance as a faster object, it just takes more time. A fast object travels the same distance faster.

Classwork

- Speed Worksheet
- Grade next class

