Name: \qquad
Group:

GERC

Step 1: Given
Write down what you have been given from the problem.
Problem: A spring pulls with 30 N on a 6 kg cart. Find the acceleration that occurs.
$\mathrm{F}=$
Make sure that you always write in the units!!!

$\mathrm{a}=$

Step 2: Equation

Use your equation chart to determine which equation you need in order to solve the problem.
$\mathrm{F}=30 \mathrm{~N}$
$\mathrm{m}=6 \mathrm{~kg}$
$\mathrm{a}=$?
$F=m * a$
Step 3: Rearrange
Rearrange the formula so that the variable you are trying to solve for is by itself on one side of the equation.

$$
\begin{aligned}
& \mathrm{F}=30 \mathrm{~N} \\
& \mathrm{~m}=6 \mathrm{~kg} \\
& \mathrm{a}=?
\end{aligned}
$$

Step 4: $\underline{\text { Calculate }}$

Substitute all the known variables into the rearranged equation and solve

Force	Variable	Unit
$\mathrm{F}=\mathrm{m}^{*} \mathrm{a}$	Force	N
	mass	kg
	a	$\mathrm{m} / \mathrm{s}^{2}$
Force	Variable	Unit
$\mathrm{F}=\mathrm{m}^{*} \mathrm{a}$	Force	N
	mass	kg
	a	$\mathrm{m} / \mathrm{s}^{2}$

Make sure that you write in the units when you substitute the knowns in to the variables.

Circle your final answer!

How to do the Algebra

$$
\begin{aligned}
& \text { Addition and subtraction are notated the same in physics equations } \\
& \text { as in basic mathematics, but not so for multiplication or division. } \\
& \text { Two letters or } \\
& \text { numbers next to } \\
& \text { each other show } \\
& \text { multiplication. } \\
& F= \\
& \text { The equal sign means that both sides are equal. Therefore, anything done } \\
& \text { to one side must be done to the other or the equation is no longer equal. } \\
& \text { Equal } \longrightarrow 35=v_{f}-10 \quad \text { Equal } \longrightarrow 35=v_{f}-10 \\
& \text { Not Equal } \longrightarrow 35=v_{f}-10+10 \\
& \text { Still Equal } \longrightarrow 35+10=v_{f}-10+10
\end{aligned}
$$

Order Matters!

"Please Excuse My Dear Aunt Sally" will help you remember you order of operations: Parenthesis; Exponents; Multiply; Divide; Add; Subtract.

Correct

Incorrect

Force	Variable	Unit

Speed	Variable	Unit

Acceleration	Variable	Unit

Work	Variable	Unit

A bike moves 30 meters in 5 seconds. Calculate the speed of the bike.		A car starts at rest. After 4 seconds it is going $24 \mathrm{~m} / \mathrm{s}$. What was the car's acceleration?	
Given:	Rearrange:	Given:	Rearrange:
Equation:	Calculate	Equation:	Calculate
A 12 N force pushes on a 3 kg object. Find the object's acceleration.		A 10 N force pushes for 3 m . How much work was done on the object?	
Given:	Rearrange:	Given:	Rearrange:
Equation:	Calculate	Equation:	Calculate
Using the same format as above, solve the following problems. A bike goes $10 \mathrm{~m} / \mathrm{s}$ for 20 seconds. Calculate how far the bike traveled.		Challenge Problems A person walks 240 meters at $3 \mathrm{~m} / \mathrm{s}$. How long did it take?	
A 2 kg object is accelerating at $12 \mathrm{~m} / \mathrm{s}^{2}$. How much force was applied to move the object?		Grandma lives 120 miles away. Dinner is at $5 \mathrm{p} . \mathrm{m}$. The speed limit is 60 mph . What time do you need to leave to be on time? (Hint, do not convert the units.)	
If a person pushes with 3 N and does 18 J of work, how far did theypush the object?			

