$\qquad$
$\qquad$

## Current

Current flows through closed circuits. Current is the amount charges that flow each second . In a wire current never changes. Current can only change if there is a junction: a split or a join.


More current means more electrons flowing, which is more electricity flowing (like more water flowing).


Voltage pushes electricity.
More voltage $=$ more current.


Resistance slows down electricity. More resistance $=$ less current.


Water falls due to gravitational potential energy (Ep). Likewise, current moves because of electrical potential energy given to electrons by voltage. There must be a change (difference) of voltage for current to move.


Dams hold back water. Resistors hold back electrons. Both reduce current.


Voltage pumps electricity, doing work to give potential electric energy (Ep) to the electrons. Batteries give voltage. The resistors use all of the electrical potential energy. This is why the voltage always equals 0 volts just before it reenters the battery.


Just as a waterwheel slows down the falling water, resistors use the electrical potential energy to do work (something useful). Anything that uses electricity has resistance: light bulbs, speakers, etc. Regardless of the amount of resistance, all the voltage is always used up in any circuit.


Ohm's Law Ohm's Law can tell us the current, voltage, or resistance if the other two of them are known.


Current is dependent on voltage and resistance.

Current can never change voltage or current, but both voltage and resistance can change current.

| Ex. How much current does a 12 V <br> battery push through a $3 \Omega$ resistor? |  |
| :--- | :--- |
| $\mathrm{V}=12 \mathrm{v}$ <br> $\mathrm{R}=3 \Omega$ <br> $\mathrm{I}=?$ | $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{12 \mathrm{v}}{3 \Omega}=4 \mathrm{~A}$ |


| 1. Voltage A. <br> 2. Units for voltage.  <br> 3. Resistance B. <br> C. Unitricts for current.  <br> 4. Amps D. <br> 5. Pushes electrons thru a circuit.   <br> 5.Ohms ( $\Omega$ ) E. Units for Resistance. <br> 6. Volts F. <br> Amount of electricity flowing in a   <br> circuit.   |  |
| :---: | :---: |
| Which has more current flowing thru it? <br> A loud radio or a quiet radio? <br> A dim light bulb or a bright light bulb? <br> A fast toy car or a slow toy car? <br> A cold wire or a hot wire? | Which will have more resistance: an insulator or a conductor? <br> Which resistor is the better conductor: $150 \Omega$ or $600 \Omega$ ? <br> Which resistor is the better insulator: $24 \Omega$ or $6 \Omega$ ? |
| Voltage (V), Current (I), or Resistance ( $R$ )? <br> A $\qquad$ If you increase resistance what decreases? <br> B. $\qquad$ If you increases voltage what increases? <br> C. $\qquad$ If the current decreased what increased? <br> D. $\qquad$ If current increased what increased? <br> E. $\qquad$ If current increased what decreased? <br> F. $\qquad$ If resistance is decreased, what increases? <br> G. $\qquad$ More batteries will increase these two quantities. | Given <br> Equation <br> Rearrange <br> Calculate <br> A $4 \Omega$ resistor has 3 A running thru it. Find the battery's voltage. <br> Given <br> Equation <br> Rearrange <br> Calculate |
|  | An 18 V battery produces 2 A in the circuit. How much resistance is in the circuit? <br> Given <br> Equation <br> Rearrange <br> Calculate |
|  | Add (A) or reduce $(\mathrm{R})$ voltage?  <br> Resistors? Wires?$\quad$ Batteries? |
| Which light bulbs will light? (All are in closed circuits.) If it does light, draw an arrow to show the direction of current. |  |
| With the same resistance, which battery will cause more current to flow: a 12 V or a 24 V battery? <br> Voltage give what kind of energy to electricity? | A bird lands on a 20,000 volt wire. Both feet are touching. <br> A) What voltage is the bird's left foot? <br> B) What voltage is the bird's right foot? <br> C) What is the difference of voltage between the bird's feet? |
| How much potential energy does water have after it falls to the ground? <br> How much voltage does a circuit have just before going back thru the batteries? | D) So, why can a bird land on an electrical wire and not get electrocuted? |

