e:	· 1		35
d:	Test	Review	
 Exothermic B. The State of the	nemicals are mixed and get hot. ne chemicals before the reaction. then chemical bonds are broken and w substances are formed. chemical reaction that gets cold. ne result of a chemical reaction. o new chemicals are formed.	 Coefficient Wafting Ammonia Arrow Precipitate Subscript 	 A. Correct way to smell chemicals B. Tells you the number of molecules. C. Should never be combined with Chlorine bleach. D. Means "produces" or "creates". E. Tells you the number of atoms in a chemical formula. F. When a liquid turns cloudy. Means a solid was formed.
Two chemicals are Heat goes into the re An activated cold pa Two chemicals are re Combustion? Heat comes out of a An activated heat pa Find the atomic mass A. Lithium = B. Helium = C. Iron = D. Silver = How many tota 2H ₂ O 5Na ₂ S	reaction? reaction? reaction? ck? res for the following elements E. Aluminum = F. Bromine = G. Uranium = H. Nickel = ral molecules are there? 2Be ₃ N ₂ 3C ₂ F ₄ 4Br ₂ 2K(OH)	Bubbles are for Melting Gets cold Color changes Boiling Digestion Changes temp Chewing	Ripping Photosynthesis Gets hot Changes smell Dissolving Salt
2H ₂ O 5Na ₂ S Products are on the Reactants are on the The arrow points to the	s on the product side? on the reactant side?	Creates carbo Creates oxyge Uses oxygen Uses carbon of Uses glucose Produces gluc Done in anim Done in plant Done in all ce Ope Will less Why	enEndothermicExothermic dioxideA combustion reactionProduces waterUses waterUses waterOccurs in chloroplastUses sunlight for energy

Endothermic or exothermic?

	:								
1. 2. 3. 4. 5. 6. Wr ion "M	Molecular Mass Closed System The Law of Conservation of Mass Open System Atomic Mass Balanced Reaction ite the following sic formulas (bala	A. When the products. B. When the gases can C. How heave molecule D. When gase experiment E. In a close lost. F. The decirable. Treaction, being maced ionic condereacts with	yy a compound or is. ses aren't caught by the ntal setup. d reaction mass cannot be nal numbers on the periodic g sure to use the correct inpounds). Lithium Oxide to produce	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
				Why do we balance chemical reactions?					
	00-200a	oand out these	Company of the Compan	Write the following in reaction notation.					
l			9 7 7 N N N N	2BeCl2 = Li2O =					
			8 72 V 8T V 194	$4Na = $ $6K_2S = $ $3Al_2O_3 = $ $7H_2O = $					
	(OH) ₂ =			N					
-	Type of Re		K ₃ N +	Balance these reactions:					
-	aty - 10 - 15 - 15 - 15 - 15 - 15 - 15 - 15	<u> 19 (8 19</u>	_	$Fe + O_2 \rightarrow Fe_2O_3$					
				$NH_3 \rightarrow N_2 + H_2$					
	N			$H_3 + \underline{\hspace{1cm}} O_2 \rightarrow \underline{\hspace{1cm}} NO + \underline{\hspace{1cm}} H_2O$					
-			Mg +	$Ag(NO_3) \rightarrow Ag(NO_3)_2 + Ag$					

 2. 3. 4. 6. 	Transition Metals Noble Gases Metals Nonmetals Ionic Covalent	B.	Gain ele Compou shared. Do not h numbers Do not c Compou	positive ions. ctrons, becoming nds formed when have consistent or combine into com nds formed between	n electrons are xidation apounds.	 Oxidation #s Octet Rule Diatomic Molecule Electrolyte Valence Electrons 	B C D	Tells you that atoms are more stable with 8 valence electrons. A molecule of two atoms of the same element. When dissolved in water, a compound that allows electricity to pass. How many electrons are gained or lost. Outermost electrons of an atom.		
Give the symbol and atomic number of these elements. Oxygen (O) _ 8 Boron () Nitrogen () Bromine () Helium () Iron () Sodium () Mercury ()						Give symbols and number of valence electrons for these: Aluminum (Al)				
How many Aluminums in Al ₂ O ₃ ? How many Magnesiums in MgCl ₂ ? How many Sodiums in Na ₃ N? How many Oxygens in Li(NO ₃)?					<u>2-2-192</u>	How many total atoms in Al ₂ O ₃ ? How many total atoms in MgCl ₂ ? How many total atoms in Na ₃ N? How many total atoms in Li(NO ₃)?				
How many electrons are gained or lost?						How many electrons will be gained or lost by: KLost 1 Ar Al Br O Ca Be H				
2	Draw the L	W	<i>Dot Diag</i> thium	rams for the foll Sulfur	Argon	Draw 3 different	t Lewi	s Dot Diagrams for Aluminum.		
I	Aluminum	Ni	trogen	Magnesium	Chlorine	Use Electron Arro	ows to	Combine Magnesium and Fluorine		

1. Al ₂ O ₃	Ionic, Covalent, or Polyatomic? Ionic	1 rejects.	npound Name minum Oxide		Metal or Non-metal? Cobalt () Sodium ()		
 O₂F₂ BeF₂ K₂(CO₃) N₂F₃ SF₆ 				M N A A	Fluorine () Argon () Magnesium () Nickel () Give the total charge a ²⁺ ₃ +6 a ²⁺ O ²⁻ [g ²⁺ F ¹⁻ a ¹⁺ F ¹⁻ ₂ 1 ³⁺ O ² ₂		
Li ²⁺ and O ²⁻ Na ¹⁺ and N ³ Al ³⁺ and O ¹⁻	: :	compounds for the following: K ¹⁺ and S ²⁻ : Li ¹⁺ and F ¹⁻ : Ca ²⁺ and P ³⁻ : Al ³⁺ and (NO ₃) ¹⁻ :	Li and Cl: Mg and O: Al and S: Mg and N:	Mg and O: Al and S: Mg and N:			
Draw the	Lewis Dot Diag	ram for molecular Fluorine (F ₂ Short har			Using shorthand, make Oxygen Dichloride		